

<u>CIRCULAIR ONDERHOUD: LEKVERLIEZEN BEPERKEN</u> Effect of flange tightening methods on bolt load scatter

Use Cases Update: 14 Mei 2020

CM Use case presentatie 4Q2019

The flange diffuse emission rate is determined by the combination of many contributing factors. The key variables are listed below:

The selected tightening method is one of these key variables and has a direct influence on the generated bolt loads. The bolt load scatter is one of the contributing factors with respect to the diffuse emission rate (See appendix I: table B.1 of NEN-EN 1591-1).

The main project objectives are:

D

- Measuring the accuracy of the most applied tightening methods in our industry.
- Determining the optimum work range of the different tightening methods with respect to:
 - Effectiveness: average bolt load and bolt load scatter as a function of bolt size, tightening sequence / method.
 - Efficiency : required labour / time span to tighten the flange with selected tightening method.

Circulair Onderhoud* Project voorstel 'Effect of flange tightening methods on bolt load scatter'							DIJKGRAAF
Flange/Piping	Material	Flange	Tightening	QA/QC	Execution	Operational	SUPPORT
Design	Qualities	Procedure	Method	Process	Quality	Conditions	

KEY TIGHTENING METHODS / VARIABLES

- Tools : hand torqueing, electric/hydraulic/pneumatic torqueing, hydraulic tensioning.
 Option for hydraulic/pneumatic torqueing: no reaction arm (Hytorc washer).
- Tightening pattern : single- and multi tooling.
- Tightening steps : steps to be taken to tighten to the 100% of the final torque [Nm].

CURRENT SITUATION

- Hand torqueing is applied to a very high torque moment (indication: up to 500. [Nm]):
 - The hand torque wrench is too large to handle in practice, resulting in high inaccuracies.
 - The hand force is too large for accurate control.
- Our industry is not aligned with respect to the accuracy of the different tightening methods.
 - Because of a lack of full scale testing data, the selection of the tightening method to be used is in many cases arbitrary.
- By sub-optimal tightening, the diffuse emission is higher as practical feasible.
- The effect of variations in friction factor between the different tightening methods is insufficient defined.

Project vo	orstel Effec	t of flange ti	gntening me	ethods or	1 DOIT IOAD	scatter	DIJKGRA
Flange/Piping Design	Material Qualities	Flange Procedure	Tightening Method	QA/QC Process	Execution Quality	Operational Conditions	SUPPORT
Full scale bolt I	oad testing	with load cel	ls: measurin	<u>g system</u>			
		nsue By/ItSafe		B¢/lt Safe			
				B ¢/lt Safe			
Network v	vith PDI	By/It Sofe		B//k Safe			
Network v With the PDI box and a	vith PDI network of CM-10	00 boxes, you can visu	ualize the bolt load co	By/k Safe			

Circulair Onderhoud* Project voorstel 'Effect of flange tightening methods on bolt load scatter'						DIJKGRAA	
Flange/Piping	Material	Flange	Tightening	QA/QC	Execution	Operational	SUPPORT
Design	Qualities	Procedure	Method	Process	Ouality	Conditions	

Based on the measuring data, the accuracy of the tightening method can be determined.

Alarming

This graph shows the measured results. Alarming too low or too high can be adjusted with a network interface.

It is possible to set an alarm with a PDI-NT box and the RS-232 and Analog converter.

Design	Material Qualities	Flange Tighten Procedure Metho	ing QA/QC Process	Execution Quality	Operational Conditions	SUPPOR
PROJECT EXE ull scale bolt I he flanges are All tightening	CUTION oad testing v e selected as methods to	with load cells: specif s such that the range be tested.	<u>fication test fl</u> is included fc	<u>anges</u> or:		
Testing the e	ffectiveness	/ efficiency of multi-t	ooling.			
Flange	Flange	Number of bolts	Flange weig	ht		
Flange Dimension	Flange Rating	Number of bolts Bolt diameter	Flange weig [kg]	ht		
Flange Dimension 4"	Flange Rating 600#	Number of bolts Bolt diameter 8 x D = 7/8"	Flange weig [kg] 2 x 17,4	ht		
Flange Dimension 4" 6"	Flange Rating 600# 600#	Number of bolts Bolt diameter 8 x D = 7/8" 12 x D = 1"	Flange weig [kg] 2 x 17,4 2 x 34,9	ht		
Flange Dimension 4" 6" 10"	Flange Rating 600# 600# 600#	Number of bolts Bolt diameter $8 \times D = 7/8"$ $12 \times D = 1"$ $16 \times D = 1 1/4"$	Flange weig [kg] 2 x 17,4 2 x 34,9 2 x 86,5	ht		

	ign	Qualities	Flang Proced	je T ure	ightenin Method	g QA/QC Process	Execution Quality	Operational Conditions	SUPPORT
PROJE(Full sca	CT EXE le bolt la	CUTION bad testir	ig with loa	d cells:	Tighten	ing method	<u>s / testing </u>	<u>scheme</u>	
		Hand Torque	Electric Torquing	Hy Tr Reac	draulic orque With tion arm	Hydraulic Torque Without Reaction arm	Hydraulic Tensioning		
Tighten Metho	iing od	(A)	(B)	Stand	ard patron	Standard patron	(E)	<u>Note</u> Multi-tooling is a testing during a	an option for follow-up proje
	Вс	lts	Tightening	Method	ls to be te	ested on flang	ge / bolt size]	
Flange		•••••••••••••••••••••••••••••••••••••••	(0)	(B)	(C)	(D)	(E)	7	
Flange 4"	8 x D) = 7/8"	(A)	(-)					
Flange 4" 6"	8 x D 12 x D	0 = 7/8'' 0 = 1''		(B)	(C)	(D)	(E)		
Flange 4" 6" 10"	8 x D 12 x D 16 x D	p = 7/8" p = 1" = 1 1/4"		(B)	(C) (C)	(D) (D)	(E) (E)		

Circulair Onderhoud*

Project voorstel 'Effect of flange tightening methods on bolt load scatter'

Appendix I

EN

	Annex B	Bolting up (tightening) method;	Factors affecting scatter	Scatter value	
	(informative)	Measuring method			-
	Tightening			<i>4</i> 1.	£1+
		Wrench: operator feel or uncontrolled	Friction, Stiffness, Qualification of operator	0,3 + 0,5 x µ	0,3 + 0,5 x µ
Scatter of initial bolt load of a single bolt — Indicative values ϵ_{1} and ϵ_{1*} for a gle bolt		Impact wrench	Friction, Stiffness, Calibration	0,2 + 0,5 x µ	0,2 + 0,5 x μ
		Torque wrench = Wrench with measuring of torque (only)	Friction, Calibration, Lubrification	0,1 + 0,5 x µ	0,1 + 0,5 x µ
		Hydraulic tensioner, Measuring of hydraulic pressure	Stiffness, Bolt length, Calibration	0,2	0,4
		Wrench or hydraulic tensioner; Measuring of bolt elongation	Stiffness, Bolt length, Calibration	0,15	0,15
		Wrench, Measuring of turn of nut (nearly to bolt yield)	Stiffness, Friction, Calibration	0,10	0,10
		Wrench, Measuring of torque and turn of nut (nearly to bolt yield)	Calibration	0,07	0,07

Tabulated scatter values are for a single boit, the scatter of the total boit load will be less, for statistical reasons, see B.2.

With hydraulic tensioner, e₁₊ et e₁, are not equal, due to the fact that an additional load is supplied to the bolt while turning the unit to contact, prior to load transfer to the nut.

μ is the friction coefficient which can be assumed between bolt and nut.

Presentation Project 05.03.2020